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Abstract

A one-dimensional transient mathematical model is used for the study of the salt diffusion and stability of the density

gradient in a solar pond. A finite difference method with a diffusion coefficient dependent on both temperature and salt

concentration is used to solve the salt diffusion equation. On the basis of simple considerations we analyze the influence

of the salinity-gradient thickness on the useful energy which can be withdrawn from the bottom layer of the solar pond.

Finally some considerations on the effect of the velocity of injected brine in rising solar ponds are presented, making use

of the Rayleigh analysis of the small perturbations in order to study the stability of the system.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

A solar pond is a simple and low cost mean to collect

and store solar energy in the form of hot high-density

salt water. It consists of three main layers (see Fig. 1).

The top layer (upper convective zone, UCZ) is cold,

close to the atmospheric temperature, and has low salt

concentration. The bottom layer (lower convective zone,

LCZ) is hot, 70–100 �C, and very salty (typically, close

to saturation). These two layers are characterized by

almost homogeneous temperature and concentration

due to convection. Separating these two layers is the

important gradient zone (non-convective zone, NCZ),

where salt content increases with depth. Water in this

layer cannot rise because the water above it has less salt

content and is therefore lighter. Similarly, water cannot

fall because the water below it has a higher salt content
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and is heavier. Therefore convective motions are hin-

dered and heat transfer from the hot LCZ to the cold

UCZ can only happens through conduction. Given the

low thermal conductivity of water, the NCZ layer acts as

a transparent insulator, permitting sunlight to be trap-

ped in the hot bottom layer, from which useful heat is

withdrawn.

Despite the simplicity of its working mechanism, the

large number of physical phenomena involved in its

operation makes the full description of the system a very

difficult problem from both the physical and the math-

ematical points of view. In fact, although the physics of

each phenomenon is quite well known, the coupling

between the phenomena needs further investigations.

A lot of theoretical studies have concentrated on

modelling the heat and salt diffusion within the solar

pond for predicting its stability and performance.

Weinberger [1] was the first to give a mathematical

formulation of the behavior of a salinity-gradient solar

pond. He identified and analyzed many important

physical processes for the stability of the salinity-gradi-

ent layer, such as the absorption of the solar radiation

by the brine solution, the losses to the atmosphere and
ed.
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Nomenclature

a, b fitting parameters, dimensionless

c salt concentration, kgm�3

cp heat capacity at constant pressure,

J kg�1 �C�1

D salt diffusivity, m2 s�1

H solar pond total thickness, m
~JJ mass flux, kgm�2 s�1

k thermal conductivity, Wm�1 �C�1

KT thermal diffusivity, m2 s�1

LCZ lower convective zone

NCZ non-convective zone

_qq heat generated per unit time and volume,

Wm�3

Q useful heat withdrawn from the LCZ per

unit time and area, Wm�2

Qg heat losses from the LCZ to the ground per

unit time and area, Wm�2

Qi ideal value of Q, Wm�2

S salinity, %

T temperature, �C
TL temperature in the LCZ, �C
TU temperature in the UCZ, �C

UCZ upper convective zone

~vv velocity, m s�1

W solar power density, Wm�2

W0 solar power density at the water surface,

Wm�2

z solar pond height, measured from the bot-

tom (z ¼ H � Z), m
Z solar pond depth, measured from the sur-

face, m

ZL solar pond depth measured at the LCZ–

NCZ boundary, m

ZU solar pond depth measured at the UCZ–

NCZ boundary, m

Greek symbols

ht refraction angle, radian

m kinematic viscosity, m2 s�1

q density, kgm�3

Superscripts

~xx vector variable

_xx time derivative
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to the ground, and the double-diffusion effect. The an-

alytical solution of the partial differential equation for

the transient temperature distribution was obtained by

superimposing the effects of the radiation absorption at

the surface, in the body of the water and at the bottom.

Meyer [2] has developed a numerical model to predict

the time-dependent behavior of the interface between the

convecting and the non-convecting regions of the solar

pond. The model utilizes the empirical correlation that

describes the heat and the salt fluxes across the interfaces

of the pond regions. Panahi et al. [3] developed a one-
Fig. 1. Schematic of a solar pond.
dimensional model to simulate the dynamic perfor-

mance of the salinity-gradient solar pond using a finite-

element technique. The model takes account of energy

flux as well as the variation of brine densities as func-

tions of temperature and salt concentration in order to

examine various pond stability criteria. Rubin and

Benedict [4] used a finite-difference implicit model to

solve the equations that relate the various parameters

involved in the solar pond model. These are the solar

radiation input, diffusion and dispersion of the heat

within the pond as well as the withdrawal of heat from

layers within the pond. Beniwal and Singh [5] modelled

the salt-gradient solar pond as a steady-state flat plate

collector. This model was used to optimize the values for

the geometrical and operational parameters of the solar

pond. Giestas et al. [6] have given important contribu-

tions to clarify the effect on the solar pond stability of

non-constant thermal and molecular diffusion coeffi-

cients. Jayaprakash and Perumal [7] have performed an

experimental study on the stability of an unsustained

solar pond, comparing the monitored density profile

with a one-dimensional model where the salt diffusivity

is a linear function of the temperature. Alagao [8] has

proposed a one-dimensional model to simulate a closed-

cycle solar pond, by using both analytical and finite

difference explicit models, with a salt diffusivity varying

linearly with the temperature.

As said before, many physical phenomena are rele-

vant for a solar pond and they are often coupled. In this
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sense it would be desirable to treat simultaneously the

heat and the salt diffusion and, if possible, the convective

motions in the convective zones. This approach is out of

the scope of this paper due to its complexity and we

focus our attention to specific aspects of the solar pond

behavior. In particular we do not explicitly treat the heat

diffusion problem and its coupling with mass diffusion.

The aim of the present paper is to predict the solar

pond stability and performance by calculating the opti-

mum salinity-gradient thickness and its transient be-

havior, taking account of the seasonal changes of both

solar radiation and solar pond temperature. A one-

dimensional finite-difference semi-implicit model is used,

the transient behavior of a solar pond with brine injec-

tion is simulated, and instability development is ana-

lyzed. The remainder of the paper is organized as

follows: in the next section the thickness of the salinity-

gradient layer which maximize the useful energy is

evaluated on the basis of a simplified model and in

Section 3 the salt diffusion process is analyzed using a

finite difference numerical approach.
2. Influence of the NCZ thickness on the energy efficiency

The efficiency of a solar pond is strongly governed

from the NCZ structure. We stress that the NCZ layer is

unstable from both a dynamical and a thermodynamical

point of view. Indeed natural and forced convection in

the UCZ and in the LCZ lead to an erosion at the

boundaries of the NCZ [9,10] and the salt diffusion tends

to homogenize the salt concentration thus reducing the

NCZ thickness. For these reasons operative interven-

tions must be planned in order to systematically adjust

the salinity-gradient profile. The number and the nature

of such interventions depend obviously from the NCZ

characteristics (among which the thickness) but we shall

not consider this aspect in this paper. On the other hand

a crucial requirement concerns the useful energy which

must be maximized: the subject of this section is to de-

rive the influence of the NCZ thickness on the energy

available in the LCZ by using a simple model.

It is clear that only a fraction of the solar energy

reaching the solar pond surface is available in the LCZ.

Indeed, part of the radiation is reflected at the surface

and part is absorbed by the water body of the UCZ and

NCZ before reaching the LCZ. Moreover, the solar

energy which reaches the LCZ is not fully available due

to the energy released to the ground and to the NCZ

through conduction.

Both the fraction of the solar power entering the

LCZ and the energy lost from the LCZ through con-

duction versus the NCZ depends on the NCZ thickness

which should therefore be optimized. The energy loss to

the ground is quite complex to estimate, but we can

reasonably suppose that it is constant if the LCZ tem-
perature is maintained constant. This assumption

strongly simplify the following derivation and it is jus-

tified from the fact that in actual solar ponds there is an

energy withdrawal from the LCZ. We assume that such

energy withdrawal maintains the LCZ temperature

constant with respect to time and we search for the

maximum value of the withdrawn energy.

The equation governing the diffusion of heat in a

conductor states

qcp
oT
ot

¼ _qqþ o

oZ
k
oT
oZ

� �
ð1Þ

where q (kgm�3) is the density, cp (J kg�1 �C�1) is the

heat capacity at constant pressure, _qq (Wm�3) is the heat

generated per unit time and volume, k (Wm�1 �C�1) is

the thermal conductivity.

In our case the term _qq is the solar energy absorbed

from the water per unit time and volume, that is

_qq ¼ � oW
oZ

ð2Þ

where W ðZÞ (Wm�2) is the solar power density at the

depth Z measured from the water surface.

The solar radiation decay in water can be expressed

with a good approximation [11] as

W ðZÞ
W0

¼ a� b ln
Z

cos ht

� �
ð3Þ

where W0 (Wm�2) is the solar power density which

penetrates the water surface (Z ¼ 0), ht is the refrac-

tion angle and a ¼ 0:4415 and b ¼ 0:094085 are ob-

tained by a fitting procedure [12] of the experimental

water absorption coefficient in the depth range from

0 to 3.5 m.

Therefore

_qq ¼ � o

oZ
W0 a

��
� b ln

Z
cos ht

� ���
¼ W0b

Z
ð4Þ

Assuming the temperature constant with respect to time

in Eq. (1) and k constant with respect to Z (that is,

temperature and salinity independent), the temperature

profile within the salinity-gradient layer is obtained by

successive integrations of the equation

o2T
oZ2

¼ �W0b
kZ

ð5Þ

Therefore we have

oT
oZ

¼ �W0b
k

lnðZÞ þ C1 ð6Þ

T ðZÞ ¼ �W0b
k

½Z lnðZÞ � Z� þ C1Z þ C2 ð7Þ



4 C. Angeli, E. Leonardi / International Journal of Heat and Mass Transfer 47 (2004) 1–10
The two constants C1 and C2 are given by

C1 ¼
TL � TU
ZL � ZU

� W0b
k

1

�
� ZU lnðZUÞ � ZL lnðZLÞ

ZU � ZL

�
ð8Þ

C2 ¼ TL þ W0b
k

½ZL lnðZLÞ � ZL� � C1ZL ð9Þ

where ZL and ZU are the values of Z at the lower and

upper boundaries of the NCZ layer, respectively and TL
and TU are the corresponding temperatures. Moreover,

due to convection, we also assume that TL and TU are the

(homogeneous) temperatures of the LCZ and UCZ, re-

spectively.

In the following (Section 3.2) we shall use the tem-

perature profile here obtained for the study of the time

evolution of the salinity gradient of a solar pond. In

order to approach an actual description of the system we

shall consider a seasonal change of the LCZ and UCZ

temperatures. It can be argued that the use of LCZ and

UCZ temperatures variable in time, which implies a

time-dependent temperature profile, is in contrast with

the derivation here developed in which the temperature

is assumed to be constant in time. Actually one can use

the fact that the seasonal evolution of the solar power

density and of the atmospheric temperature, which in-

duce the modification of the LCZ and UCZ tempera-

tures, develops in a time scale much longer than the time

scale in which the temperature profile adapts itself to the

new values of TU and TL. In practice one can imagine

that the temperature profile is instantaneously defined

by the varying LCZ and UCZ temperatures. With this

assumption our approach remains correct.

The heat which can be extracted from the LCZ, Q,
can be expressed in terms of an energy balance between

the solar energy reaching the LCZ (obtained from Eq.

(3)) and the conduction heat losses to the NCZ and to

the ground, Qg

Q¼W0 a
�

�b ln
ZL

cosht

� ��
� k

oT
oZ

����
ZL

�Qg

¼W0 a
�

�b ln
ZL

cosht

� ��
� k

�
�W0b

k
lnðZLÞþC1

�
�Qg

ð10Þ
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Fig. 2. Dependence of the optimum NCZ thickness (left) and ideal h

20 �C).
The optimum thickness of the NCZ is given imposing

oQ
oZL

¼ 0 ð11Þ

and noting that Qg does not depend on ZL within our

model, one gets

TL � TU ¼ �W0b
k

1

��
þ ln

ZL

ZU

� ��
ZU � ZL

�
ð12Þ

The second derivatives of Q with respect to ZL computed

for the value of ZL which satisfies Eq. (11)

o2Q
oZ2

L

¼ W0b

ðZL � ZUÞ2
ZU

ZL

�
� 1

�
ð13Þ

confirms that the condition in Eq. (12) is obtained for a

maximum of Q. Indeed one can easily verify that the

right hand side of Eq. (13) is negative (ZU < ZL).

By numerically solving Eq. (12) with respect to ZL

and replacing its value in Eq. (10) we find the maximum

useful heat available in the LCZ. Actually in order to

know Q we need to estimate Qg which depends on many

constructive characteristics (but not on the NCZ thick-

ness within our model). We therefore introduce the

quantity Qi ¼ Qþ Qg which is the upper limit for the

useful energy and it is equal to Q for an ideal perfectly

insulated solar pond bottom (Qg ¼ 0).

Fig. 2 shows the dependence of the optimum NCZ

thickness and ideal heat efficiency, gi ¼ Qi=W0, from the

LCZ temperature. In this case we have assumed

W0 ¼ 300 Wm�2, TU ¼ 20 �C, ZU ¼ 0:5 m and cos ht has

been replaced in the equations by its time averaged value

hðcos htÞ�1i ¼ 1:16, which are reasonable parameters for

a solar pond located at the latitude of 39�N during the

summer period (the location of southern Sardinia, Italy).

From Fig. 2 we note that the ideal heat efficiency is a

decreasing function of the LCZ temperature, due to the

fact that the conduction heat losses from the LCZ to the

NCZ increases with the LCZ temperature.

The ideal heat efficiency is lower during the winter

period, when typical solar radiation of about 140 Wm�2
 32
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(at 39�N) is available, and UCZ and LCZ temperatures

are about 10 and 70 �C, respectively. In this case, if a

solar pond is constructed to maximize the solar energy

capture during the summer (when the LCZ temperature

can easily reach about 90 �C, and, therefore, the NCZ

thickness is of about 2.5 m), in winter a heat storage

efficiency of about 26% should be attained, which is

about 4% less than its maximum obtainable value

(which should correspond to a NCZ thickness of about

4 m).
3. The salt diffusion within the solar pond

As mentioned in the previous section, the crucial

aspect of a solar pond operation is the NCZ stability

(convective motions are hindered), which is ensured by a

strong enough salinity gradient. Obviously the salinity

gradient is unstable from a thermodynamical point of

view, given that diffusion tends to homogenize the salt

concentration.

The maintenance of the salinity profile within the

NCZ can be obtained by addition of salt in the LCZ and

flushing with fresh water or low salinity water at the

UCZ (this is done in order to take into account both salt

diffusion from the NCZ and evaporative water losses at

the surface). These interventions must be planned by

monitoring the modifications of the salinity gradient.

Therefore the dynamic of the salt diffusion is a key

phenomenon to study and to keep under control.

In this section we present some considerations on the

salt diffusion in the solar pond, its time-scale and tem-

perature dependence.

3.1. The mathematical model

The principle of mass transfer for the solute results in

an equation of the form:

oc
ot

¼ �~r �~JJ ¼ �~r � ð~vvc� D~rcÞ; ð14Þ

where ~JJ is the mass flux,~vv is the velocity, c is the solute

concentration, D is the diffusion coefficient and the op-

erator ~r� is simply o
oz � in the present model.

In the case of a rising solar pond, v is the rise velocity
of the NCZ, positive upward, and it is constant with

respect to time and space. In a first approximation, a

solar pond can be thought as composed of horizontal

layers of infinitesimal thickness, which are homogeneous

in concentration. Following this approximation, the

process of salt diffusion can be studied using a one-

dimensional approach. Therefore we have used a one-

dimensional (1D) finite difference scheme to solve the

above equation. The concentration cðz; tÞ is computed

on a regular grid of points in z ðfz1; z2; . . . ; znzg,
ziþ1 � zi ¼ DzÞ and t ðft1; t2; . . . ; tntg, tiþ1 � ti ¼ DtÞ. For
the sake of simplicity we use the compact formalism ci;j
for cðzi; tjÞ. We have used the second-order accurate in

time Crank–Nicholson scheme with a position depen-

dent diffusion coefficient [13]:

ci;j � ci;j�1

Dt
¼ �v

ðciþ1;j � ci�1;jÞ þ ðciþ1;j�1 � ci�1;j�1Þ
4Dz

þ 1

2ðDzÞ2
fDiþ1

2
½ðciþ1;j � ci;jÞ

þ ðciþ1;j�1 � ci;j�1Þ� þ Di�1
2
½ðci�1;j � ci;jÞ

þ ðci�1;j�1 � ci;j�1Þ�g ð15Þ

where

Diþ1
2
¼ Dðziþ1Þ þ DðziÞ

2
ð16Þ

Di�1
2
¼ Dðzi�1Þ þ DðziÞ

2
ð17Þ

Eq. (15) can be rewritten in the form of a system of

linear equations (one set for each time tj)

b
�

� aiþ1
2

	
ciþ1;j þ 1

�
þ aiþ1

2
þ ai�1

2

	
ci;j

� b
�

þ ai�1
2

	
ci�1;j ¼ Bi;j ð18Þ

where

b ¼ vDt
4Dz

ð19Þ

aiþ1
2
¼

Diþ1
2
Dt

2ðDzÞ2
ð20Þ

ai�1
2
¼

Di�1
2
Dt

2ðDzÞ2
ð21Þ

and

Bi;j ¼ � vDt
4Dz

ðciþ1;j�1 � ci�1;j�1Þ þ aiþ1
2
ðciþ1;j�1 � ci;j�1Þ

þ ai�1
2
ðci�1;j�1 � ci;j�1Þ þ ci;j�1 ð22Þ

The system of linear equations (18) can be written in the

matrix form

ACj ¼ Bj 8j ¼ 2; nt ð23Þ

and it can be easily solved, once the initial (ci;0, for all i)
and boundary conditions (c1;j and cnz ;j at each time tj)
are imposed, by using standard mathematical libraries

such as for instance the LAPACK ones [14]. We note, in

passing, that our scheme, being a semi-implicit method,

is stable for any Dt [13], therefore we do not have re-

strictions on the time step size apart from those imposed

by the required accuracy.

Following Alagao [8], the two boundary conditions

for the NCZ do not depend on time and are given by
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(1) at the bottom: J ¼ vc�, where c� and v are the

concentration and the velocity of the injected brine,

respectively,

(2) at the top: c ¼ cU, where cU is the concentration of

the flushed UCZ.

Once the diffusion problem has been solved, thus

obtaining the value for ci;j, the following properties can

be obtained:

• the flux, Ji;j (kgm�2 day�1), at any point zi, tj
• the density, qi;j (kgm�3), at any point zi, tj: it is a

function of the temperature T and of the salinity S
(g kg�1). In the case of a NaCl aqueous solution q
is given by [15]:

qðz; tÞ ¼ 1000� 1

�
� T þ a
b� ðT þ cÞ � ðT � dÞ2

�

þ eðT Þ � S þ f ðT Þ � S
3
2 þ g � S2 ð24Þ

where a ¼ 288:9414, b ¼ 508929:2, c ¼ 68:12963, d ¼
3:9863, g ¼ 4:8314� 10�4 and

eðT Þ ¼ 8:24493� 10�1 � 4:0899� 10�3 � T

þ 7:6438� 10�5 � T 2 � 8:2467� 10�7 � T 3

þ 5:3675� 10�9 � T 4

f ðT Þ ¼ � 5:724� 10�3 þ 1:0227� 10�4 � T

� 1:6546� 10�6 � T 2

We do not have direct access to the salinity because it

is, in its turn, a function of the concentration and of

the density

Sðz; tÞ ¼ cðz; tÞ
qðz; tÞ ð25Þ

Therefore the calculation of qi;j has been imple-

mented in an iterative scheme: we consider first

Si;j ¼ ci;j, then compute qi;j using Eq. (24) and finally

compute Si;j using Eq. (25). The process is repeated

until the variation of q between two successive steps

is lower than a certain threshold. The salinity func-

tion Sðz; tÞ is therefore another output of the pro-

gram.

Two different expressions for the diffusion coefficient

D have been implemented in our code: the first is [16,17]

Di ¼ D0 � ½1þ 0:029ðTi � 20Þ� ð26Þ

which gives the dependence of the diffusivity coefficient

on the temperature (�C) for a NaCl aqueous solution. D0

is equal to 1.39· 10�9 in m2 s�1 or 1.20· 10�4 in

m2 day�1.

A more precise expression, in which also the depen-

dence on the salinity is considered, is obtained by a least

square fit to the International Critical Tables for a range
of temperature between 5 and 100 �C and for a salinity

range between 0% and 20% [6]

Di;j ¼ ð8:16þ 0:255Ti þ 0:00254T 2
i � 0:28Si;j

þ 0:0147S2
i;jÞ � 10�10 ð27Þ

where S is the salinity in wt% ðS ¼ c=q � 100Þ and Di;j is

in m2 s�1. It is clear that Eq. (27) for D makes the study

of mass diffusion a complex non-linear problem. We

have implemented two alternative solutions in order to

keep the approach simple:

(1) Di;j is computed using the salinity Si;j�1 at time tj�1,

which is a very good approximation, given that D
has a small dependence on S and that S (or c)
changes very slowly from one time step to the next

one;

(2) for each time step tj the concentration c is computed

iteratively, each step consisting in the computation

of D using the values of S obtained at the previous

step and recomputing c. For the first step the values

of D are obtained following the approximation de-

scribed in point 1. The iterative approach is stopped

when a convergence criterion is satisfied.

Obviously the steady state solution is not affected by

which of the two methods is used.

The temperature profile within the solar pond is

computed from Eq. (1). Moreover, since diffusion is a

slow process, the transient should take into account the

seasonal changes of the solar radiation density and of

the average LCZ and UCZ temperatures. Both solar

radiation and LCZ and UCZ temperatures are para-

meters which depend on latitude, weather and ground

characteristics, therefore these informations should be

obtained from experimental measurements and treated

as input data for the numerical code.

The stability of a solar pond warmed by solar radi-

ation is maintained by means of a sufficiently steep salt

concentration gradient. From the Rayleigh analysis of

the small perturbations to which all natural systems are

susceptible [16] it comes out that the salt gradient re-

quired for maintaining the stability is given by

F¼def oc
oz

þ
ðm þ KTÞ oq

oT


 �
oT
oz


 �
ðm þ DÞ oq

oc


 � 6 0 ð28Þ

where m is the kinematic viscosity (in m2 s�1), KT is the

thermal diffusivity (in m2 s�1) and we have introduced

the instability function F (for F6 0 the system is stable

with respect to small perturbations). The derivatives oq
oT

and oq
oc ¼ 1

q
oq
oS

� 	
are obtained from Eq. (24), while oT

oz is

given by Eq. (6). Let us note that with respect to Ref.

[16] the direction of the inequality is inverted due to the

different definition of z.
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with three different approximate expressions, as a function of

the NCZ height for a solar pond as defined in Ref. [8] (TL ¼ 80
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we use the initial salinity profile which varies almost linearly.
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In the LCZ and UCZ, convective motions develop on

a time scale much shorter than the diffusive motions,

maintaining their temperature and concentration ho-

mogeneous at any time step. Therefore, we have imple-

mented the possibility of averaging the concentration in

the LCZ and UCZ, after the solution of the diffusion

equation at each time step.

3.2. Discussion of the simulation results

In this paper we discuss the salt diffusion, neglecting

the thermodiffusion effect, which is the salt tendency to

migrate under the effect of a temperature gradient (Soret

effect).

At this level, our results are approximated, but,

nevertheless, they give an idea of the time-scale of the

salt diffusion and of the onset of the instabilities within

the solar pond.

As a first application we have considered the influ-

ence of the diffusion coefficient profile on the steady

state concentration. In order to compare our results with

those of Alagao [8], we have considered a NCZ thickness

of 1.0 m. The initial NaCl concentration (kgm�3) is

assumed to be a linear function of the depth, ranging

from 200 at the bottom of the NCZ to 40 at its upper

surface. The brine is injected at the bottom of the NCZ

at a velocity, v, of 2.778· 10�4 m day�1 and it has a NaCl

concentration, c�, of 311.25 kgm�3. We focus our at-

tention on the NCZ layer, and therefore we suppose the

LCZ and UCZ to have a zero thickness. The salt diffu-

sion is computed by discretization of the computational

domain with Dz ¼ 0:01 m, and Dt ¼ 1:0 day. First of all,

we have tested our code performing a calculation in

which the salt diffusion coefficient is taken from Ref. [8]:

the analytical steady-state concentration profile found

by Alagao is obtained after a transient of 15 years. For

comparison we report in Fig. 3 the salt diffusion coeffi-

cient computed from Eqs. (26) and (27) and from the

expression used by Alagao [8].

From Fig. 3 one notes that the three curves, although

being quite similar in the upper part of the NCZ, par-

tially differ in the salty and worm bottom part of the
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NCZ. We have therefore chosen to use in the following

Eq. (27) to compute D.
We want now to study the transient behavior and the

effect of the injected brine for a solar pond located in a

Mediterranean country. The temperature and solar

power density are supposed to follow the time evolution

of Fig. 4 which are reasonable choices for this area.

The NCZ thickness is chosen to be the optimum

thickness for the summer period when a solar power

density of 300 Wm�2 and a LCZ temperature of 90 �C
are reasonable values. As found in Section 2 (Fig. 2), the

optimum NCZ thickness for such parameters is 2.5 m.

All the other parameters are those used in the previous

simulation for the comparison with the results of Ref.

[8].

The time evolution for a transient of 40 years of the

concentration computed at four values of the NCZ

height (z ¼ 0:5, 1.0, 1.5, 2.0 m) is reported in Fig. 5.

From this figure one senses that the periodicity of the

UCZ and LCZ temperatures and of the solar power
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Fig. 5. Time evolution of the concentration computed at four

values of the NCZ height (z ¼ 0:5, 1.0, 1.5, 2.0 m) for a solar

pond with a NCZ thickness of 2.5 m, a brine injection velocity

and concentration of 2.778· 10�4 mday�1 and 311.25 kgm�3,

respectively. The initial salt concentration varies linearly from

200 kgm�3 at z ¼ 0 m to 40 kgm�3 at z ¼ 2:5 m.
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density is reflected on the evolution of the concentration.

Therefore the system does not reach a true steady-state

but rather a ‘‘pseudo steady-state’’ where the concen-

tration periodically oscillates around a constant value.

The amplitude of the oscillation is small with respect

to the changes of the concentration with the NCZ

height. The oscillation are less relevant at the beginning

of the time evolution and becomes significant for long

times, when the ‘‘pseudo steady-state’’ is reached, as

shown in Fig. 6 where a zoom of the final part of the

z ¼ 2:0 m curve is plotted.

In Figs. 7 and 8 we report the transient behavior of

the concentration profile and of the instability function

(see Eq. (28)).

From Fig. 8 one can note that the instability function

always remains below zero, thus guaranteeing that the
rising of convective motion is hindered. It is clear that

this is due to a large enough velocity of the injected

saturated brine. Indeed, in the limiting case of a zero

velocity, the steady-state (in this case no oscillating be-

havior occurs for large times) has a constant concen-

tration and the system results obviously unstable. We

have found that with a velocity of the injected brine

v ¼ 5:5� 10�5 m day�1 instability appears at the quasi-

steady state while for lower values of v instabilities de-

velop at finite time. For instance with v ¼ 3:0� 10�5

mday�1 the instability function becomes greater than

zero in an interval around z ¼ 1 m after eight years.

Finally, we explore the influence of the NCZ thick-

ness on the effects considered above. The time evolution

of the salt concentration for four values of the NCZ

height (z ¼ 0:2, 0.4, 0.6, 0.8 m) and with the same solar

pond parameters used in the case plotted in Fig. 5, but
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Fig. 9. Time evolution of the concentration computed at four

values of the NCZ height (z ¼ 0:2, 0.4, 0.6, 0.8 m) for a solar

pond with a NCZ thickness of 1.0 m, a brine injection velocity

and concentration of 2.778· 10�4 mday�1 and 311.25 kgm�3,

respectively. The initial salt concentration varies linearly from

200 kgm�3 at z ¼ 0 m to 40 kgm�3 at z ¼ 1:0 m.
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with a NCZ thickness of 1 m are reported in Fig. 9.

Given that in this case the quasi-steady state is reached

faster than with the NCZ thickness of 2.5 m, the time of

the simulation reported in Fig. 9 has been reduced to 20

years. One can note that in this case the amplitude of the

oscillations at the quasi-steady state is greater than in

the previous case and they appear since the beginning of

the simulation.

From the analysis of the instability function it results

that the stability of the system is improved with respect

to the case with a NCZ thickness of 2.5 m and therefore

lower values of v are allowed without the appearance of

instabilities.
4. Conclusions

In this study, after some preliminary considerations

which justifies the typical thickness of the salinity-

gradient layer, a 1D mathematical model of the salt

diffusion within the solar pond has been presented and

discussed. The equation obtained for the model has been

solved numerically by using the finite difference method.

In order to simulate a transient, we have assumed ar-

bitrary but reasonable functions to describe the fluctu-

ations of both the temperatures of the LCZ and UCZ

and the solar power density during the year. In a

quantitative study, these parameters should be experi-

mental data, being strongly dependent on the geo-

graphical location of the solar pond, and the thermal

properties of the ground.

The Rayleigh analysis has been used to follow the

onset of convection within the salinity-gradient layer.

We have confirmed that although the salt diffusion is a
very slow process, to make the solar pond operative for

many years (typically, 15–20 years), one must operate in

order to compensate the variation of the salt concen-

trations at the NCZ boundaries, by adding saturated

brine in the LCZ and flushing the UCZ.
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